We are ZEISS HISTORICA
FOHO II

This FOLIO is the official publication of the ZXISS HISTORICA SOCIETY OF AMERICA. A non-proíit educational Society with the Aims and objectives of studying and exchanging Information on the EISTORY, the PEOPLE, the INSTRUMENTS and the LORE of the ZEISS COMPANIES OF GERMANY: The Society has no official conmection with these compenies, but muthal interest and friendly liason are encouraged as official Pollcy.

Readers are encouraged to submit manuscripte and ariicles to the Editor for publishing consideration. ALI PIOHTS TO REFRODUCE IN WHOLE OR IN PART THE ARTICLES, DOCUNENTS, FOIO'S AND BULLETTNS IISTED ABOVE are reserved by the AUTHORS and/or the ZEISS HISTORICA SUCIETY OF AMERICA. ADplications for permission to use this material should be submitted to the OFFIGE OF THE SEORETARY (Nicholas Grossmen, 13 Watchwater Way, Rockville, Waryland $20850 / 45 A$ - Te2. 3014249075.

AUS JENA

1978 Ernst Abbe Pize and
Otto Schott Prize awarded
On September 12, 1978, the 1978 Enst Abbe Prize was awarded to Dipl. 1 ing. F. RICHTER, Dipl.-Ing. B GUTBERLET, Dipi. ing. R. HOFMANN, ing E. FISCHER and Mrs. K. HUTTIG, precision optical worker, members of VE8 Can Zeiss JENA's RED team for "Streamlining Microscope Lens Manufacture". From 1971 to 1977 the team developed new manufacturing and measuring technologies, which reshaped the production of microscope lenses. New design principies, manuiacturing and measuring tools resulted in a fundamental improvement in quality, in terms of geomernical mechanical tolerances, by 3 to 5 classes. A ten- to twenty-fold better precisicn of optical adjustment was reached. This enabled the traditional way of ciaftsman. like maniufacture of microscopes, which dates back to ERNST ABBE, to be replaced by quantity production at economical costs, notwithstanding the closer centring, clearance and thickness tolerances in modern high performance microscope lenses made at Jena.

Dr. A, BODE and Dipl.Phys. S. JETSCHKE recaived the 1978 Otto Schoti Prize for their contributions to the devlopement of up-todase methods of testing high-performance lenses according to the graticule-slit-edge analysis. In this connection two things are worth special mention the accuracy of the methods was substantially improved, also the modulation transfer measurement ranges wers extended, which is essential in image quality testing of air and photolithographic lenses One exampie is the 4/125 Pinatar lens of the MKF-6 Multispectral Camera - a product of this firm - which had been tested with this new modulation transfer measuring unit.

The Ernst Abbe and the Otto Schott Pize were donated by the Carl Zeiss Stiftung of JENA at the initiative of the Professiona! Association of Optics of the GDR Physical Society. The intention is to further outstanding scientific and scientific-organizational achievements in the field of optics leading to more efficient optical designs and technologies.

CHRISTIAN HOFMANN

Stone-Age Settlement Found
EAST BERLIN, Nov. 24 (Reuters) Engineers building a new reservoir in southern East Germany have uncovered the remains of a 6,000 -year-old stone-age settiement, the official press agency A.D.N. said this week. Archeologists are examining skeletoris, flint tools and fragments of pottery found at the site, near the industrial city of Jena, the agency said.

Proxar leases for the Tessar $\mathrm{F} / 3.5$ and $\mathrm{F} / 2.8,5 \mathrm{~cm}$. 1×27 for $1^{\prime \prime}-6^{\prime \prime}$ distance
2×27 for $1^{\prime}-1^{\prime \prime}$ distance 2×27 for $1-1$ distance Proxar leuses for the Somar $F / 2,5 \mathrm{~cm}$. 1×37 for $1^{\prime}-7^{\prime \prime}$ distance.
2×37 for $1^{\prime}-1^{\prime \prime}$ distance. 2×37 for $1^{\prime}-1^{\prime \prime}$ distance
Proxar lenses for the Sonmar
Proxar lenses for the Somar $F / 1.5,5 \mathrm{~cm}$.
1×42 for $1^{\prime}-7^{\prime \prime}$ distance
2×42 for $1^{\prime}-1^{\prime \prime}$ distance
Carl Zeiss light yellow filter (27) for the Tessar $\mathrm{F} / 3.5,5 \mathrm{~cm}$. Carl Zeiss light yellow filter (27) for the Tessar $1 / 2.28,5 \mathrm{~cm}$. Carl Zeiss light yellow filter (37) for the Sonnar $F / 2,5 \mathrm{~cm} .$. Carl Zeiss light yellow filter (37) for the Triotar $F / 4,8.5 \mathrm{~cm}$. Carl Zeiss light yellow filter (42) for the Sonnar $F / 4,13.5 \mathrm{~cm}$. Carl Zeiss light yellow filter (42) for the Sonndr F/1.5, 5 cm . Sunshade (42) for the Tes,ar $F / 3.5,5 \mathrm{~cm} . \cdots$ Sunshade (42) for the Tespar F/2.8, $5 \mathrm{~cm} . \cdots$ Sunshade $(37) \geq$ for the Sopnar F/2, 2 cg Sumshade (37) for the Tiotar $F / 4,8.5 \mathrm{~cm}$.
 Sunshade (42) for the fonher $F / 1.5,5 \mathrm{~cm}$. Daylight loading roll of 36 exponures Zeiss-Ikon Ortho-ultra-rapid fim Daylight loading roll of 36 exposures Zeiss-Ikon Fine Grain film (570°) Daylight loading roll of 36 exposures Eastman Kodak Super-Sensitive. Panchromatic film HELINOX-CONTAX Enlarger Eveready carrying case for CONTAX camera equipped with Carl Zeisi Soft leather Zipper pouch for CONTAX camera equipped with Carl Zeiss Tessar F/3.5, or $\mathrm{F} / 2.8 \ldots .$.

Zeiss Headquarters

$$
\text { Author } \quad \mathrm{MEAD} \quad \mathrm{~K} I \mathrm{BBE}
$$

On September 24, 1979 I was priviledged to visit the CARI ZEISS COMPANY as the representative of the Zeiss Historice Society for the purpose of presentirg Honourary memberships to Mr. WOLI WEHRAN; Dr. HANS SAJER (FOto F); Dr。HEINZ KÚUPENBENDER (Foto G); and Dr. LUDWIG BERTELE (Foto F). The meeting had been arranged on quite short notice by Mr. FRANZ SCHNEIDER of their legal department, and frankly it could not have been more enjoyable if it had taken a year to do it :

My daughter, my wife and I arrived about 10:30 AM after a pleasant two hour motorcar drive from Stuttgart. The town is very pretty - (there seems to be no small ugly towns in Southern Germany) and the multistory factory is visible for miles. By rolling down the window of the car near any resident and saying ' ZEISS ? ' one receives an instant point in the correct direction.

At the guarded gate we were guided into a special parking space and Mr. SCHNEIDER met and accompanied us into the lobby where in rapid succession we received ZEISS identification badges, met our host for the day - Mr. HANS LETSCHE; inspected magnificent bronze busts of CARL ZEISS * ERNST AEBE * and OTTO SCHOTT, and say workmen installing a remarkably fine group of cameras on loan from the WOLF WEHRAN COLLECTION.

The first stop was at Mr. LETSCHE'S office where we left our coats and met Dr. JOACHIM KAMMERER, Chief Scientist, Photo Instrument Division; and Mr. HANS JCACHIM DREXLER, Sales Manager of the Photo Division. Mr. LETSCHE is presently the Director of the Photo Optical Departnent and was formerly associated with the ZEISS IKON STUTTGART KAMERA WORKS until its liquidation. He had also been special assistant to Dr. KUPPENBENDER during his tenure as managing Director of the ZEISS COMPANY, and as a result he was uniquely fitted to explain the operations from a photographic point of view.

We next visited the lens grinding facilities under the management of Mr. MARTEN who explained the operation of many special machines which had been designed by ZEISS in order to hold the exceptionally close tolerances they requixe. Some lenses were being finlshed - ground irom pre cast shapes, but the majority appeared to come from blanks sawn from large blocks of optical glass. Although our tour had to move quite rapidiy, we received the impression of almost clinical cleanliness, and close attention to and pride in the work by all employees ! The special ZEISS designed machines for final assembly and testing of Photographic objectives conducted extensive tests in seconde often with a simple red light indicating rejection or unacceptable performance.

Lenses were being made for (among othexs) Hasselblad, Contax and Rollei. Contax lenses of the commoner types (PLANAR $1: 1.7 \mathrm{f}=5 \mathrm{~cm}$) are also made in Japan (YASHICA) undex close ZEISS scrutiny; complex lens designs such as the DISTGGON 1:3.5 f=15mm are made at OBRRKOCHEN. In the axea where the lenses were mounted, there were sone interesting displays including an example of the famous SONNAR $1: 5,6 \mathrm{f}=250 \mathrm{~mm}$ ued in space exploration. After leaving this area we visited the assembly space approximately six storieg high where Astronomicel Telescopes are erected and tested. It was my understanding that planetariums are also assembled in this environment although no work of this type was in progress at that moment.

At $1 P M$ we gathered in the penthouse meeting room Where for the first time we met Dr.HANS SAUER, since 1941 Neneging Director of the Photographic Objective Department; and Dr. HEINZ KUPPENBENDER the Inventor of the CONTAX KAMERA SYSTEM. Dr. KÜPPENEENDER since 1929, was head of the design section at ZEISS IKON DRESDEN uritil the mid 1930's when ZeISS exploded with new ideas in the photographic field. ZEISS had always been innovative, (as early as 1908 they had produced a camera where winding the film also cocked the shutter), but in this period they developed and marketed a split 127 roll film camexa with a TESSAR 1:2 f=4cm lens and Newtonian direct viewfinder (KOLIBRI); the 35mm CONGAX SYSTEM which featured the red dot bayonet leng mount still in use all over the world, and the first metal focel plane shutter; the rotating prism wedge coupled rangefinder roll film camera (SUPER IKONTA); the world'e first and only 35 mm twin lens reflex camera with built-in exposure meter, a viewing image lerger then the photograpaic image (CONTAFIEX TLR); and in optics tie legendary 1;2.8 fxl80mm Olympic SONNAR in mirror reflex housing; the world's fastest commercial lens for taking l6mmovies of a fluorescent $X-r a y$ screen the $R-B I O T A R 1: .85 f=4.5 \mathrm{~cm}$ and many more.

Dr, KÜPPENBENDER had personally developed and patented (see Patent Drawing) early in this period a prototype system by which the CONTAX lenses were electrically coupled to a built-in photoelectric exposure meter and both f opening and shutter speed were used as metering perameters. Knowing all this, I had expected to meet very old men who would have little to say of those distant days. To my surprize and delight they both displayed physical well-being and mental alertness that would befit men in midale age. As we saw them over the next few hours I came to feel that if they were needed in an emergency they could hare returned to positions of top authority at any time.

At the first meeting I presented the $2 H$ Honourary Memberships, and Mr. SCHNEIDER accepted for Mr. WEHRAN who was away on holiday, and Dr. BERTELE who lives in Switzerland. We all then drank a toast to the ZEISS WORKS and its current visitors. Duxing a delicious lunch we heard many details of the LRESDEN days and a great deal about the move to OBERKOCHEN. As I understand it essentially what occured was as follows:

Late in WW II the Amexican Army felt that several optical devices - including an Aerial Camera producing l2" $x 121$ negatives of startling clarity (PLEON LENS) - produced by the ZEISS WORKS were of great strategic importance. Ammy intelligence at the time of surrender, intended to move all or part of the facilities to either west Germany, England or the United States. JiNA was occupied by U.S. forces, but within a few weeks and well before transportation of equipment could be arranged, the potsdam Agreement required that this area be given over to Russian Control. In a very quick decision the Army decided that even if it proved impossible to move any machinery, the real secret of MEISS lay in the minds and hearts of its top executives, and possibly in some of its more vital records. The records had already been under American examination, the incredible ZEISS lens collection shipped on June 22,1945 to the Signal Corp Photographic Center, Astoria Long Island (later transferred to the Squire Signal Laboxatory, Fort Monmouth, New Jersey); and the ZEISS 'index cards' for each lens which revealed the complete formula, were sent to wight Patterson Air Force base, Dayton, ohio. Thru the diligent efforts and luck of the American optical designer EDifARD K. KAPRELIAN, these cards were reunited with the lenses.

With only forty eight hours notice several freight cars were loaded with vital records and portable equipment for trarsport to what would be west Germany by the U.S. Army. In the woras of Dr. KUPPENBENDER - ' and we're still waiting for them to arrive! 'Next the Army assembled long convoys of truchs in the streets of the Sonnenberg district oi the city, rounded up approximately one hundred (some reports say only eighty-eight could be found) top officials of 2 EISS and SChoTR Companies, and on the 24 th and 25 th of June 1945 rolled out of the city for destinations unknown. The convoy first traveled South to Nuremberg and then swung west leaving Bavaria and finally arrived in the small Swabian town of HEIDENHEIM on the river Brenz. A town about half way between Stuttgart and Munich and quite near Ulm. Our hoste Dr.Sauer and Dr.kuppenbender were among this group. They were lodged first in huts previously used by the Germans to house polish and Russian prisoners of war. Not long after this move the ZEISS people were allowed the use of an abendoned, but largely undamaged, aircraft gear factory in the nearby village of OBERKOCHEN previously operated by proprietors with the unlikely name of Leitz - not related to another family of the same name manufacturing a Inne of microscopes and some photo equipment. With seed money payed by the U.S. for the ZEISS lenses, some otiver funds from the ZEISS Trust and private investment the ZEISS people quickly built up the lens works of OBERKOUHEN, re-opened the STUTTGART camera works and other pre-war operations in the Westers Zone. Within $31 / 2$ years they had a line of cameras available together with binoculars, telescopes, microscones and even a very successful lock factory at the ZEISS IKON AG GOERZWERE, Berlin -Zehlendorf. I know of no other example of such a rapid recovery of a large company which retained only the minds and leadership of such a small group.

I brought a number of photographs of many ZEISS IKON prewar cemeras and lenses, and it was really fascinating to hear Dr. SAUER and Dr. KUPPENBENDER discuss the development of the eerly cemeras as well as the stories of the early days at CBERKOCHEN. The younger ZEISS people who attended the lunch appeared to be equally interested and very actively added to the more modern aspects of the story.

After lunch, Mr. IETSCHE showed us the microscope assembly and demonstration area. It is my undexstanding that zeISS is now the largest maker of optical and electron microscopes in the world. We then visited the ZEISS MUSEUM where we met Mr. Manfred Berger of the marketing services department. The museum is beautifully arranged, but for my taste leans, quite understandably, toward the history of microscopes and spectacles, since those are two of ZEISS'S largest current consumer product ines. The cameras displayed were fine examples of the historical developmest of photography and included an item which I had not heard of before, the very first hand held camera put up into space orbit by NASA.

This was a CONTAREX SPECIAL chosen periaps becaue the ball bearing focusing and shutter could operate without degreasing down to -100 degrees F. The camera was purchased from the stock of a Houston. Texas dealer and the ZEISS company did not know of its use until it was returned to Earth and its magnificent pictures published. ZEISS lenses were used on all subsequent Space trips in conjunction with Hasselblad cameras of special design.

At the Museum we were given special Zills pens, and my wife received a beautiful cut glass vase with the Zeiss name engraved. One of the pens and a Zeiss Identification badge which we were allowed to keep have been forwarded to the Zeiss Historica Archives.

Dr.WOLFGANG PFEIFFER, Editor of the ZEISS INPORMATION Journal and Information Director was not present at this time, but he very thoughtfully had left for me a fine selection of ZEISS publications and some reprints of the OBERKOCHEN municipal area which included additional data on the Company.

Lastly, Mr.LETSCHE showed us a beautifully made film about space travel in the sales auditorium in the main building. We then left for stuttgart firmly convinced that we had spent a day with some wonderful people who are carrying on the great traditions of ZEISS and who made a great effort to help Zeiss Historica and its most grateful representative.

ZEISS HISTORICA SEMAPHOR ARTICLE A / D.IX. 80 Five pages with Foto's $\mathrm{F}-\mathrm{G}-\mathrm{H} \quad / \mathrm{VFsiK}$ ALI RIGHTS RESERVED
Feb. 18, 1936.
H KUPPENBENDER
2,031,321
PHOTOGRAPHIC GAMERA
US Patent
Filed Nov. 15, 1934
Figl

Heing Küppenzender by B efinger hisAEtorney

It seems that ever since photography was invented, their has been a demand for cameras which could be concealed so that candid pictures could be mede unperceived by the subject.

Several classic exampes of this genrie are shown below .. A. The ARCUS/ERCO monocular 'spy' camera by contessa-Nettel (I926-193I) with ninety degree viewing and taking lens.
B. The KODAK matchbox Camera of 1943.
C. The EXPO WAICH CAMERA (detective) of 1904.

b

In I943 at 2EISS IKON DRESUEN I was approacked by Colome 1 2APE of the Gerinan Fedezal Civiline Police (sinillam to the USA - FBI); to propose aeverai small caneras that could be kidden in the hand of the photographer. The results vexe the caneras shown in the attached sketches...

Editore Note . . Hubert Nerwin was a member of managemeat at $\mathrm{H}_{\mathrm{*}}$

> ZEISS IKON DRESDEN I932-1945

ZEISS IKON STUQMCART 1945-1947

gEISS HISTORICA 3RHEPHOR DOCUHEN 0 / D.IX. 80 / vTELK Tex peges 121 uetwated / 421 rights reserved

```
Enclosur:B - A -
```

8we Motion-picture camera

Dimensiong: 2,250n high, 4,125n 1ong, 1,040" thick. Desigm: Die-Castings and Sheet-Metel. Yimgapacity: 30 Feet bmoperforeted film. (Filo nes arailable for dgia-liovaz Camera.)

Filmedvagee: Spring-Driving-Eotor, hand vinding.
Iens:
Highly Corrected Anastignat $1: 2 / 8$ m
Diaplaragm: Iris Diephregm settings, $2,2,8,4,5,6,8,11$,

Appendix to Enclosure - A-

A Objective lens for pritere toking f:2/8 an
B Dislame setting ring $10^{\prime}, 15^{\circ}, 20^{\circ}, 40^{\circ}, 00$.
C Dioptrayn setting ring, $2,28,456,8,11$.
(1) ejective lens for Brimiant-Vaer-Finder

E reen-finder lens.
F Winding knob for Spring witior
G Release button for sawera
H Cover to close film chamber

```
Enolosure - B -
```


16m Still-Cemera.

Dimensions: $1,150^{\circ}$ longe 0.875° and $0,825^{\circ}$ Die. respactively Filmegeecity: 4 pietures, fom by 1200 on $160 m$ Film, Filmodvasoe: Filmtrangorit oonbinsd with Shutber cooking: Shuters Lens: On Spest ($1 / 50$) and Bulb-settiag pogsible, Highly correcher Anestigmet $f: 2,6 / 20 \mathrm{mb}$.

Appendix to Enclosure - B-
stutter release

Rand front part contains shinier and lens
Rettangillor port cemprismie finurcaitanuer is movable Io $^{\circ}$ around leas axis for fibmitranspori end shutter cichorif.

Pis me example of biding the cancre, on actual smoking pipe eruld be used.
A firtione filter cell be employed th hide the fare of the camera which is peri' cf a decorative design ca the bul the pipe. The filmtramspent ard the shatter cock ny could be done by turning the mouthpiece an' the release of the shutter by pushing a rod whthon the mouth mere with the teeth or the to inge.


```
    Enelosure - C -
```

8om Sti11-Comera.

Dimengions: $0,670^{*}$ long, $0,500^{n}$ and $0,410^{n}$ Dia. respectively,
Filmespacity: 6 Plctures, 3 min by 4 ma on 8 mo Film, Finmedyence: Filmtransport comblned with Shutfer cookine, Shutter: One speed (1450) ead Bulb-Setting poestble; Lens: Highly correoted Anast Lgmat $f: 2,8$ / 10 mm .

Appendix to Enclosure - C -

Front pare com be covesed with didironefinter (dimmishomy light power of lens stightly) incider to hide (ace of camerd. Fgriva A, E, C' show examples where by the filter byer is inside.

For statitization in tokngy piciures the use of this canmero is most farcualle in /ermotam peas or peencils.
 fimbtrmispart and shititer celking, cribld therely befinedly manted to the pen-er pencie bedy while the frent pant
 wht the cap of the pen or peruci? using the cip fer release of shuther.

Enclosure - D -

16mosth12-Cemera. (General puxpose Cemere)

DLaensioge: $2,750^{\circ}$ 10ng, $1,125^{\circ} \mathrm{hagh}, 1,060^{n}$ thek,
Fijmoeracity: 40 Pletures, 10 mm by 15 mm . Filomength 30°, (Daylight-loading Gartridgen)

Fimedyane日: F1imtrensport combined with Shutter oooking,
Stutter: Speedrange: $E, 2,5,10,25,50,100,200$,

Lemees: Interchangeable Lenees in Bayonet Mount. i: $2 / 20 \mathrm{~mm}, f: 3,5 / 45 \mathrm{~mm}: r: 5,6 / 80 \mathrm{me}$.

Appendix to Enclosure - D

A Winding knob for film transport and shutter cocking.
B Release button for camera.
C Counting dial
D View /index
E Objective lens $1: 2 / 20$ mim
F objective lems f: $3.5 / 45 \mathrm{~m} / \mathrm{m}$
G Objective lens $f: 5,6 / 80 \mathrm{~mm}$
H Film cartridge (Daylight loading) Capacity 40 frames:
I Shatterspeed dial $B, 2,5,10,25,50,100,200$.

```
    Emologure - E -
```


Developing. Kit for B end. C_{8}
A daylight developing kit for the two cameras war designs. which was easily portable in a co et pocket enc bed approximately the following dimensions: 2^{n} long, 1^{n} Wide, $5 / 8^{n}$ thick.

Inaction of film bad to be done in the dark.

Develogiar Teak for D.

A daylight developing tank for this camera was designed Which received the film oartridge as taken from the camera. The film wee then spooled into the developing tank before pouring in the developer.
mproximete dimensions: $3,5^{n}$ Diameter, $1,5^{\circ}$ Height.

Instruments $A_{2} B, C$ ked been designed to completion.
Instrument D was designed in it'e main components.
lastrument B was produced in a number of models for the purpose of a production rus.
models end drawlage had been destroyed by eft attack.
Patents had not been applisd for because of the secret nature of the work.

Lost of the important dotells of ell instruments ere still retained in my memory. The instruments therefore can easily be redesigned.

ZEISS Softar

New soft-focus athachmenis
by Dieder Renner
"The unsurpassed deflcacy of the picture the exactude of the lires - the precision of the formis" - that is what Arago praised in 1839 before the Fiench Chamber of Deputies, speaking of the painter Delaroche He was praising a new invention: photography. But it was long before portraitists occasionally found the crisp sharpness of the photographic lens somewhat disturbing It was at the time when the collodion process was being introduced. The wet plate clearly revealé detaits which up to then had been covered up owing to the sensitive materia! employed. As a result, the first softfocus lenses were born. In 1865 - i. e more than a hundred years ago - Julia Margaret Carmeron, the first and highly gified woman portratisi, used a lens

deliberately undercorrected "or spreericai abberration in her work. In our days, photography neads both: lenses for needlesharp definition and optimum contrast rendition for reatistic recording on the one hand and the soft-focus lens on the other. Following suggestions received from photographic practice, CABL ZEISS now have created a new type of soffocus attachment, the Softar

Pomt image plus sof tocus
The Softar will convert any photographic lens into a sot-focus lens. That was known before. Whet is new le that the Sofar combines a cors of sharp definition with a soit-focus effect. The basic sharp image and precise contours exterd right out to the comers of the field. This faclitates ground-glass focusing amd gives an excellent idea of the picture. A twofoid gatm

Luminous halo

Characteristic of the Soflar is the soft light scatier with highlights spreading into the shadows; the highlights reman completoly intact, but they begin to sparkle and shimmer the way we see a burning cande. The diffusion is continuous, without sharp transition. This softecus effect is completely uniform over the entire field and independent of the direction of edges - ancther innovation. But that is not all:

Independent of pelative aperture

If soft-focus lenses ara stopped down to. say, f/8 or more, the sof-focus effect will disappear. The optical systern will then work harshly and without the special appeal of the diffused image. Not so the Softar. Here the effect of diffusion is independent of the relative aperture used. In other words, the camera lens may be stopped down to increase the depth of fleld without changing the sof-focus effect. Whoever has worksd in this fieid will know how important this is. The majority of all photos are taken with medium apertures. The Softar now guarantees plcterial diffusion in this case also.

Threa types - 7 varlations
The Softar is aveilable in three different grades. These can be aktached to the camera lens either singly or in any desired combination. The sequence of the disks is practically of no importance. We thus obtain a
cotal of seven (1) possibie variotions.
i, in, III, $1+11,1+111,!i+i l$ and $1+11+11$. Like any good filter, the Softer has no effect on focusing. Thus, if the camera has been focused without a Softar, no refocusing is reguirad after slipping one or more Softars onto the lens.

The Sottar in practice

Porsature will probably be the primery application of the Softar. The appealling freshness of a girl's or child's face will be stressed still further by a subte halo of diffusion At the same time, this "optical retoucting" will subdue distracting detai! such as skin blemishes. The lumnous halo, the shimmering highlighis, in ahort all the "glamour" of sof focus are brough out fully by the Soter.
By analogy, In outdoor ahots the Softar is often useful for producing the effect of a sight atmospheric hazs. A photographer confronted with extreme contrest in his subjec: - for instance auturn leaves against the light with dark background - will choose the Softar $/$ or 11 . The Softar is suitable for inanimate objects calling for particularly bright highlights. The combination of severa! Sofiars provides the portratist with a speciai, unusual instrument for photographing children, girls and women. The diffusion can be made very strong if dosired. It will be a matter of tasta to decide whether men's portreits should be diffused to such an extent No hard and fast rules can be laid down. But we should perhaps be grateful for a few things that cannot be standardized.

As the human eys seet it

In the nifreteen-thities and forties, softfocusing techniques wers mos: popular among photographers, pioneered above all by the Hungarians. However, one disadvantage was soon found to be rather disturbing: even slight diffusion automatically resulted in a decrease in sharpness, in resolving power. This is not the way we see things, however. Let us revert to the example of the burning candle which appears on our retina with the typical soft-focus halo (caused by physiological conditions in the eye). But at the same time we see sharp contours. Now finally the same impression can be captured photographically, thanks to the Softar.

For color photograpiny as wal..
A growing number of soft-rocus pictures are now being produced in color photography and above all in advertising. Here alio the Softar will be a wolcome aid. In this field, wide use is made of large-forma: cameras In which the lens has to be stopped down relatively far to obtain the required depth of field. With the Softar, there is no limit to stopping down.
The Softars! and It are best sulted for color photography. With the Sofar Ill colors may taka on pastel shades due to the relatively strong diffusion effect. While this may be desirable in some cases, it will not be 50 as a rule.

For emarglng and ... projection

The Softar may also be used to advantage for enlarging, the effect being inverse to that on the camera lens. It will play down the grain and at the same time subdue the highlights in the positive, an effect which may sometmes be very desirabie. Since detal sharpness is fully presenved, foousing is easy with the Sotar on the enlarger lens. During projection the effect of the Softar is also cleaty visible and comparable to that on the camera lens.

Soff-focus sftect - exacty measured

From its appearance, the Sofer might be described as a neutral fllter. its front sufface contains protuberances of about 2 mm diameter. These protuberances are a few thousandths of a millimeter thick and approximasely evenly dismibuted over the surface The Softer 111 has the grestest number of protuberances, the Softar 1 the lowes: These new ZEISS iene attachments have bean sysiometically developed by measur. ing the sof-focus affect on the basis of the modulation-transiar function.
The transparent medium of the Soitar is a highly resistant plastic. Dus: should preferably be removed with a soft brush. The disk itself may be exchanged in its precise moun… Thanks to its outstanding features the Softar is a valuable aid to the creathe artis: in many fieles of pictorial photography. Whoever does not want to produce exolusive'y sober, factua! reproductions will welcome this moden and versatle ZEiSS sofu-focus attechment.

Carl Zeiss

75 th Anniversary of his Death

On December 3, 1963, the Zeiss Works and all the plants united in the Carl Zeiss Foundation paid tribute to the memory of the man who, in 1840 , founded the factory which. like the Foundation, continues to bear his name. It diminishes in no way the mert of the founder to recall that both the firm and the Foundation owe their international status today primanty to the genius of Ernst Abbe, Carl Zeiss' collaborator and friend, who was an eminent scientist and a pioneer in social reform, and who later became his sole successor.

On May 10, 1846, Carl Zeiss addressed to the head of the County Administration in Weimar an application for permission to found "An Estabiishment for the Production of Advanced Mechanica! Devices". This proves that Zeiss intended from the start to seek "direct association with men of science", and the University of Jena se₹med to him the most favorable ground in the immediate vicinity of his home for his endeavor.

However, it was to be roughiy 20 years before Carl Zeiss secured the close assobiation with science that he deemed to be indispensible. In those two decedes, he grew weary of the grooing method of trial and error until "hundreds of lenses produced one good objective".

Nevertheless, in 1866 a close link with Ernst Abbe was established. Abbe, under the spur of his own creative work, sought and obtained the co-operation of Otto Schott, the great glass chemist, who through his optical glass melts for the first time provided the means of putting Abbe's calculations to a practical test.

But eyen after the collaboration with Ernst Abbe was secured, it took another 20 years before their work bore visible fruit; and it may, perhaps, be considered one of Carl Zeiss' most outstanding qualities that he never faltered on the long and arduous road towards Abbe's goal, with all the expense and risks involved.

On the occasion of this commemoration it seems appropriate to give a brief sketch of the first 20 vears after the founding of Carl Zeiss' workshop. During those two decades, Zeiss - the founder, master and owner of a
craftaman's workshop whicn started in a ver, small way and greduatly expanded - was entrely depandent on his own resources un": he achieved the close collaboration with scientists he had aimed at from the outses.

Cart Zaisa was borit in Weimar on September 11, 18:6, the son of Johan Gownied Augus! Zeisa, "Court Cabinet-Maker and Carver of Portraits in lvory", and grew 4 with five brothers and sisters. In 1834 he graduated from the high school in his home town, with the aim of becoming an instrumen:maker Wrille still at school, he "took par in lessone at the Grand Duke'z Trade Schooi" and aftewards wrote as follows about his further trainirg
*Then, in the year 1834, 1 began four yea-s of agprenticeship in Jera unde- Dr. Köne. instrument-maker at the Grand Duke's Cout, while at the same time atiending acedemic courses suitable for a mechenical craftamar. I had obtained the necessary credentials 'or doing so by passing the marriculation examination on leevng high schod from janua; 1838 until October 1845 , continued my training by working in the most reputable phys cal, optical, mathematica! and mashing workshops in Stutgart, Darmstadt, Vienra and Eerlin, during which time I did not fail to take advantage of every avallable opportunity to perfect myself further in the ralated ar:s and sciences that are useful and necessary to an instument-maker Since my retur, in October 1345, I have again been sojournng in this city for the chief purpose of studying chemistry and higher mathematics"

Without the thorough theoretical and practical knowiedge thus obtainied, it would scarcely have been possible for Carl Zess to pass the examination required by the Office of the Grand Duks's Superitendent of Works befure t grantec him "a licerce. as requested, to marufacture and se! mechanical and ootical instruments and to estabish a mechanical workshop." The later was opened at No. 7 Neugasse on November 17, 1846, with a working capital of 100 thalers ($\$ 75.00$). The moment was favorable. Although Jena the had only 6300 inhabitants and, as ye? no rairoad link, the natural scientists at the university were starting to work in new fields of reseerch. for
which they required microscopes and other apparatus to an increasing degres. After Zeiss had hired his first journeyman mechanic in the spring of 1847. he moved his workshop on luly 1 of the same year, to 32 Wagnergasse. At tha? time, he was selling spectacles. laboratory equipmien, scales and optical instruments; he was also repairing a very grea! variety of apparatus used in scientific instruction at the university At the end of August, 1847, Zeiss took or his first apprentice. This was August Lober, wholater proved his worth, particularly by inventing, independently, a method of checking finished lenses by means of a test glass, an inspection procedure which is still common today

It was, above all, Professor M. 1. Schieicen, the founder of modern botany and of plant cytology, who urged upon Cart Zeiss the idea of taking up the manufaciure of simple microscopes, which, from 1848 onward, found a good market. At the same time, Carl Zeiss devoted his attention to the construction of compound microscopes, the first of which was soid in 1858.

In 1855 . Zeiss reported that his staff consisted of "a few apprentices one grinder and one journeyman, or, from time to time, two" Two thirds of his instruments were sold out of town, which proves that his microscopes, to quote the opinion of a scientist of repute, "were of excellent quality in every respect".

By 1866 , the number of men employed by Zeiss had risen to twenty. They spent their working day, $193 / 4$ hours at that time (with a quarter of an hour's break in the morning and an hour for lunch), in the spacious premises of his third workshop on Johannisplatz to which Zeiss had moved in 1857.

The products of the Zeiss Workshop had won a good name for themseives, particularly on account of the many improvements that, in the 'sixties, had been developed with infinite care by Carl Zeiss and his foreman Löber. In the face of so much recognition

- see FOTO I

Car Zaiss at the age of fifty.
and of the expansion of trade achieved up to that point, many a master craftsman in the same situation would have been content to rest on his laurels. Zeiss, however, declined to go on grinding and combining lenses on the basis of skill and experience, without knowing the laws that governed these processes. His aim was to be able to calculate in advance the curvature, thickness, diameter, and distance of the lenses, and to select. in advance, the types of glass with the best optical performance.
By studying textbooks at night, he tried to familiarize himself with the theory of optics. also enlisting the help of the mathematician Barfuss, whose calculations turned out, however, to be of no use. Carl Zeiss was thoroughly aware of his limitations when fate ruled that he won over Ernst Abbe, lecturer at the University of Jena since 1863 , to take an interest in optical problems. Abbe
became so invoived that he henceforth devoted all his attention to the new task. The principle of the founders, to go into produc. tion only after prior thorough research by scientists in the particular field. has since become law at the Zeiss Works.

No one is better qualified or more entitled to pay homage to Carl Zeiss than his longstanding friend, collaborator and partner, Ernst Abbe. In his memorial address to mark the fifteth anniversary of the ZESS Works on September 12, 1896, Abbe sald:
"In Carl Zeiss, a man has gone from us whose life work gave birth to a new idea and carried it to perfection. It is to his lasting credit that in his own special field of work, he has opened the way to fruitfu! co-operation between scientific research and technical know-how."

SCRIBBEIS
\&
QUERIES

Membership Forum ZEISS HISTORICA D.TX. 80 / VTslk BULLETIN G
... am preparing article on the CONTAFIEX SLR stereo system and need copies of any 'Z' publication pertaining to same; please post to JOHN ALIDREDGE … much gratitude.
... do you wish to learn the date of manufacture of your CONTAREX LENSES ? Simply forward lens type and serial number to MEAD KIBBCY.
... two members have achieved Imortality by generously donating ZEISS publications to the Archives. (Mr.CHARLES N. BARRINGER and MR. HARRY GRAY) -- the Society is indebted.
... ZEISS LORE - ' 10 MARKS PER CENTIMETER ' -jokingly referxed to the pricing of the 50 cm fern lens for Contax by the marketing department of JENA during the $1930^{\prime} \mathrm{s}$.

HUBERT NERUN
... inclosed (absolutely free) from NICHOLAS GEOSSMAN is a salmon coloured copy of our Nembership Application Form, and guess what he asks ??? !!! - you're right on ...

PLEASE HELIF YOUR BAFFLED EDITOR
... do you own a Contax with the LOGO - engraved here ? please send me the body number.
.. what precisely is the differance between BINOCULARS and EIELD GIASSES ?
... who has expertize in translating technical German ?
... what do you own in ZEISS military equipment ?
CARLZEISS•1926 - need info on manufacturing facilities in
Fabriques à lena, Vienne, Györ Vienna, Gyōr and also CARL ZEISS * HALIE.
*** LOOKING FOR'ARD TO SHAKING YOUR HAND AT OUR ANJUAL FESTSCHRIET ***
further ZEISS reading - POPULAR PHOTOGRAPHY (February ' 80 -page 15)-
(MAROH 180-page 21) - MODERN PHOTOGRAPHY (February 80 - page 75).

A. STEINLE

SUBNEATNE PERTSCOEZ
Filed Jurs 19. 1923

UNPED STATES PATENT OFRCE,

ADOLT STERTE, OF JENA, GERKANE, ASSIGNOR TO TEE FLRM OE CABL ZETSS, OE JENA, GERMEANT.

SUBIARETE PXRISCOR5:

Application fled Jame 19, 1923. Serial No. $0=6,3 \in 2$.

To all ohom it may concern:
Be it known that I, Abolf. Stanie, a citizen of Germang, and residing at Jena, Germans, have intented a net and useful s Suhnarine Periscope (for whoh I have filed an application in (iermuny July 29, 1922), of which the following is a specifation.

The present insention reates to a submarine periseove whose ocmbr is fitted to a cesing rotatable supported on the beat's hull in which casing a tube contuining the eatrance reflector of the periscope is so disposed as to participate in rotations of the casing and as to be displaceably disposte s relatively to the casing in the direction of its axis coinciding with the exis of rotation of the casing.

For periscopes of this kind it has been suggested to construct a gearing in such a

- be effetel by a motor rimidly set up in th. boat's hall without the motion of displace. ment and of rotation of the perisope affecting each other. According to the inven. 3 tion there is dotained a gearing which is considerably more simplifed than those hitherto sugrested if the demand that the motion of displacenent and of rotation are independent of one another be restricied to such an least as to karran the independence at least approximately. This restricted demand is fulflled if the wearing which serves for displaying the tube contains a wom wheel sapported on the cusing and engaging 5 in a worm, whose axis coincides with the axis of rotation of the casing. The worm may either be supported on the boat's hull or on the casing or woth on the boat's hull and the casing. If prosision be made that 0 in the gearing which serves for adustivg the worm whel, inclusite of the motor serting for the actuation, the friction is slighter than in the womn gearing, the worm participates in any displacements of the casingt extirely rarranted.

The annexed drawing shows a constructional example of the invention. Fig. 1 is a longitudinal section on line $i-1$ of Fig th. Ig. 2 is another iongitadinal section ou the line ?-2 of Fig. 1, Fige: 3 is a cross sec. tion on the line 3-3 of Fig. 1.

On a base a^{2} assumed to be rigidly connected to the bont's hull a a casing b is sum6 ported rotatahly abuat an anis X-X. For
simplicitrs sake the actuation for the rota. tion is not shorn is the diawing, Within the casing b there is supported dinglaceably in the direction of the axis $X-X$ a tube c Which contans the encrance reatctor (not visible in the drawing) of the periscope and whin is provided at its loter end with a reflecting prism c^{1} which transmits the luminous rays emerging from the tabe c in the downmard direction to an ocular b^{2} disposed at the upper part of the carsing b. A worm d is supported on the base a^{2} and on a cross heal e°, screwed to ine casing b, in such a way that its axis comedes rith the axis of rotation X-X. A berel wheel d^{2} suppoited on the worra-shaft d^{n} engages in a bevel whe?! e^{1} supported on the base a^{2}, the shaft e^{0} of the berel wheel e^{1} beiner assumed to be coupled to a motor. In the worm d engage two morm wheel gear. 1 ings j which are fitted each to the nave f of a rope palley f. The two rope pullers are rotatably supported on the casing b in such a way that their axes $\mathrm{Y}-\mathrm{I}^{-\frac{2}{2}}$ and $Y^{2}-I^{2}$ are parallel to each ather and he on different sides of the axis $X-X$. Orer each of both rope pulleys f^{2} rums an endless rope f which rests upon a. pulleg ft supported on the top of the casing b. The tule c is suspended at the tro ropes f^{3} by means of a cross bat c^{2}.

The periscope is dra, r in and out by ac. thating the rorm a from the shaft e^{c}. If the friction in the worm gearing be grater than in the gearing actuating the rom, of oo which rearing only the bere? wheels d^{1} and e^{2} are shown in the drawing in the event of a rotation of the casing b about tre axis X-X the wora whel gentigs f drive the worm rhich entails a slichet rotation of the os geariny $d^{1} e^{1} \ldots$ inclusive of the motor shaft tout does no affect the lifting motion of the tubs c. If the conditions of friction be inverse. i. e. if with a rotation of the casing z the worm remains unaffecte?, the 100 worm wheel rearings f experience owing to their meshing with the worm d a slight rotation ahout their ases $\mathrm{Y}^{2}-\mathrm{I}^{2}$ and $\mathrm{Y}^{2}-\mathrm{Y}^{2}$ respectively. which retation is, however, so insignificant that both rotetion und dieplare- 20 a meat may practically be considered independent of each other.

I claira:

1. In a subusarine periscope a casing: means for rotatably supporting this casing 110
on a beat's hull, an ocular fitted to this casing. a tube adapted to contain at its upyer end an entrance refoctor and having its axis coinciding with the axis of rotation
3 of the casing, tie tube beiner dispiaceably disposed relatively to the casing in the direction of these ases, means for coupling the casing and the tabe for joint roation. and a gearing adapted to displace the said
10 tube in the sald direction and containiag at least one wom theel rotatably disposed on the casing and a worm engaing in this worm theel. the axis of whith coincides with the axis of the casing.
2. In a submarine periscope a casing, moans for rotatably supporting this casing on a boat's hull, an ocular fitted to this cas-
ing, a tabe achapted to contain at its upper and an entrance reflector and having its axis coinciding with the $8 \times i s$ of rotation 20 of the casing, the tube being displaceably dize cosed relatively to the casing in the directicn of these axes, means for coupling the casing and the tube for joint rotation, and a gearing adapte? to displace tle said os tule in the said dire tion and containag at least one worm wheel rotatably disposed on the casing and a worm engating in this moun wheti, the axis of which coincides with the axis of the cusing. the frichom in $3 n$ the wom wheel and the worm beisg greter than that of the other parts of the gearing.

ADOLF STETNLE.

